

CHALLENGES AND STRATEGIES IN FRUIT JUICE PROBIOTICATION: A REVIEW

Rajkumar Arjun Dagadkhair^{1,*}, VasantNarayanrao Pawar¹, Ajay Kumar Sharma², ShwetaJeevan Raichurkar¹, AnupamaNarsinghrao Devkatte¹ and Gauri Harish Athawale¹ ¹MIT School of Food Technology, MIT ADT University, Pune, Maharashtra, India ²ICAR-National Research Centre for Grapes, Pune, Maharashtra, India

Abstract

Probiotic cultures are successfully applied in various types of food matrices. Numerous food products including dairy, meats, beverages, cereals, vegetables and fruit are utilized as delivery vehicles for probiotics. Fruits are exhibited as appropriate for probiotic products as they don't have any dairy allergens that may prevent usage by part of the population. Also, they contain numerous functional food components like as minerals, vitamins, dietary fibers, and antioxidants. Even though the fruit juices contain various vital nutrients (minerals, vitamins, dietary fibers, antioxidants), there are some strong factors that could limit probiotic survival in juices like food parameters (titratable acidity, molecular oxygen, water activity, presence of salt, sugar, pH and chemicals, like hydrogen peroxide, bacteriocins, artificial flavoring and coloring agents), processing parameters (heat treatment, incubation temperature, cooling rate, packaging materials and storage methods, oxygen levels, volume) and microbiological parameters (strains of probiotics in juices. An easy way to improve probiotic stability in fruit juice could be the fortification of juice with some prebiotics.Induction of Resistance could be achieved through two different strategies: strain cultivation in a lab medium containing different amounts of fruit juices (up to 50%) or added with vanillic acid (phenol stress) or aldified to pH 5.0 (acid stress).

Introduction

Foods are not only designed to fulfil hunger and to supply necessary nutrients for humans butalso, to prevent or reduce the advancement of nutrition-related diseases and to boost physical and mental well-being (Shori, 2014). With respect to this, functional foods play animportant role. The term functionalfood was first utilised in Japan, where the concept of food designed to be medically beneficial to thecustomer evolved during the 1980s (Siro et al., 2008). Functional food can be defined as food or dietary components that may provide a health benefit beyond the basic function of providing nutrients (Cencic and Chingwaru, 2010). Probiotic foods are one amongest the fastest growing field of functional food production. Probiotics are live microorganisms that when consumed in sufficient amounts exert their health benefits. Probiotic cultures are successfully applied in various types of food matrices. Numerous food products including dairy, meats, beverages, cereals, vegetables and fruit are utilized as delivery vehicles for probiotics. Fruits are exhibited as appropriate for probiotic products as they don't have any dairy allergens that may prevent usage by part of the population. Also, they contain numerous functional food components like as minerals, vitamins, dietary fibers and antioxidants. Juice is

defined as "the extractable fluid contents of tissues or cells." Each juice has particular, chemical, nutritional and sensorial characteristics, depending upon the kind or nature of fruit or vegetable used. In recent years, studies which were carried out on non-dairy probiotic beverages such as tomato, cabbage, blackcurrant, orange, beet root and carrot juices are performed in combination with different probiotic strains showed the appealing results (Naga et al., 2014). Consumer's interest in whole foods with enhanced nutritional qualities is at an alltime high, and more consumers are opting foods on based on their health benefits (Joao et al., 2012) Fermented foods are food substrates that are invaded or overgrown by edible microorganisms whose enzymes, mainly amylases, proteases and lipases, hydrolase polysaccharides, proteins and lipids to non-toxic products with flavor's, aromas and textures pleasant and attractive to the consumers (Steinkraus, 1997). Number of health benefits is linked to the consumption of probiotic products like as treatment of diarrhea, alleviation of symptoms of lactose intolerance, reduction of blood cholesterol, treatment of irritable bowel syndrome, and inflammatory bowel disease, anti-carcinogenic properties, synthesis of vitamins, and enhancing immunity (Kerry et al., 2018). The market of functional foods is identified by an

^{*}Corresponding author Email: radagadkhair@yahoo.co.in

increasing trend; some researchers reported that probiotic foods represent ca. 60-70% of functional foods (Kidist *et al.*, 2019). Generally, the concentrations of 10^6 and 10^7 - 10^8 cfu mL⁻¹ (cfu g⁻¹), respectively, are accepted because of the minimum and satisfactory levels (Karimi *et al.*, 2011).

Challenges for Probiotic Survival in Fruit Juice

Even though the fruit juices contain various vital nutrients (minerals, vitamins, dietary fibers, antioxidants), there are some strong factors that could limit probiotic survival in juices like food parameters (titratable acidity, molecular oxygen, water activity, presence of salt, sugar, pH and chemicals, like hydrogen peroxide, bacteriocins, artificial flavoring and coloring agents), processing parameters (heat treatment, incubation temperature, cooling rate, packaging materials and storage methods, oxygen levels, volume) and microbiological parameters (strains of probiotics, rate and proportion of inoculation) (Perricone *et al.*, 2015).

Mostly, pH exerts a negative effect, but protein and dietary fiber could protect cells from acidic stress; the role of citric and malic acids is divisive, as they appeared to protect probiotics, whereas phenols could cause a much viability loss. Even if the pH is a problem for probiotic survival in juices, Ranadheera *et al.* (2014) assumed that the addition of lactic acid bacteria into fruit juices with low pH may improve the resistance of bacteria to consequent stressful acidic conditions, as those found in GIT.

Strategies for Improving Survival of Probiotic Strains

Different authors proposed successful strategies to improve the survival of probiotics in juices; in this section there is a focus on some case-studies dealing with interesting solutions. An easy way to improve probiotic stability in fruit juice could be the fortification of juice with some prebiotics (dietary fiber, cellulose) or with some ingredients able to exert a protective effect. Adaptation and Induction of Resistance could be achieved through two different strategies: strain cultivation in a lab medium containing different amounts of fruit juices (up to 50%) or added with vanillic acid (phenol stress) or acidified to pH 5.0 (acid stress). These approaches resulted in a prolongation of the viability of lactic cultures by 5 (phenol stress) or 11 days (pH stress). The viability of probiotic bacteria in juices is negatively related to storage temperature, as refrigeration could assure a longer survival, whereas a thermal abuse could show a detrimental effect. Some authors proposed different strategies to fight against the effects of a thermal abuse. Micro encapsulation technologies have been designed and successfully applied using various matrices to protect the bacterial cells from the damage caused by the external environment. Few more inventions in the way of improving viability of probiotic cell count in fruit juices given bellow.

Sensory Characteristics and Consumer Acceptance of Probiotic Fruit Juice

Many researchers showcased that overall acceptance remained unaffected due to the probiotication of fruit juice like Rodrigues et al. (2009) for a fresh apple beverage fermented by Lb. casei, Perricone et al., (2014) for pineapple juice containing Lb. reuteri and Ellendersen et al., (2012) for apple juice fermented with Lb. casei. Luckow and Delahunty (2004) observed that the sensory characteristics of probiotic black currant juice were perfumery and dairy in odour and sour and savoury in flavour. Wunwisa and Kamolnate (2010) found that the addition of probiotic beads enhanced the sensory properties of the product by increasing the swallowing difficulty and remaining particles of the products. The orange and grape juices containing probiotic beads (82.3 and 84.3%, respectively) was accepted by the maximum consumers. Pineapple with Consortium (Pediococcus pentosaceus LaG1, Pediococcus pentosaceus LBF2 and Lactobacillus rhamnosus GG was preferred over the single culture pineapple juice (Tayo and Akpeji, 2016). Luckow et al. (2006) explicit that the incorporation of tropical fruit juices, principally pineapple, however cojointly mango or passion fruit (10% v/v), may completely contribute to the aroma and flavor of the end product and may avoid the identification of probiotic off-flavors by consumers. Ranadheera et al. (2014) underlined that some fruit juices might naturally mask the "medicinaltaste of probiotics.

Safety Issues and Assessment of Probiotic

Probiotics are more often considered as food supplements, and not pharmaceuticals, which suggests the avoidance of extremely thorough testing which are obligatory for all pharmaceuticals. If the probiotic manufacturer makes any specific heath claim, probiotics will be categorized as food supplements, meaning that the focus on safety c be underestimated. Furthermore, if any health claimsfound on the packaging of probiotics, regulatory bodies will examine mainly the validity of such claims and not the safety of the product (De Simone, 2019).

Most probiotic bacteria are marketed in foodstuffs or feed supplements hence probiotic bacteria safety is very important. Through a long research of safe use in food as starter cultures these microbes are confirmed as safe. Bacteria like *Lactobacillus, Leuconostoc* and *Pediococcus* species have been used in food processing throughout the history. LAB areclassified as generally recognized as safe (GRAS), and there were no reports of any harmful effects from the consumption of these bacteria through many processed products (fermented dairy, fermented vegetables etc.) (Naidu *et al.*, 1999).

In the EU, European Food Safety Authority (EFSA) oversees reviewing health claims of probiotics, which are usually stated on the label while the Food Products Directive and Regulation (2000/13/EU, 178/2002/EC) controls both probiotics and food supplements. The EFSA also issues the Qualified Presumption of Safety (QPS) for various bacterial strains. The word "presumption" is the only criteria linked with the actual true safety of probiotics, meaning that safety valuation is not the primary concern (Binnendijk and Rijkers, 2013).

Many of the clinical case studies reported that the increased usage of probiotic products of lactobacilli did not causeany increase in incidence or frequency of bacteremia in Finland and few reported the adverse effects of it. Naturally, bifidobacteria are the key bacteria in the intestinal tract of breast-fed infants and are believed to contribute to the good health of infants. As the reports of a harmful effect of these microbes on the host are very sporadic so till now, the safety of the bifidobacteria has not been questioned.

Use of probiotic bacteria in ill persons is restricted to the strains and indications with proven effectiveness. A multidisciplinary approach is needed to judge the toxicological, immunological, gastroenterological, pathological, infectivity, the inherent properties of the microbes, virulence factors comprising metabolic activity, and microbiological effects of probiotic strains. Various methods have been established to evaluate the safety of LAB through the use of in vitro studies, animal studies, and human clinical studies.

Safety considerations of probiotic bacteria comprise of antibiotic resistance profiles, infectivity in immunecompromised animal models, toxin production: probiotic bacteria must be tested for toxin production. The EU Scientific Committee on Animal Nutrition has recommendedoneof the possible schemes for testing toxin production *i.e.*, hemolytic activity, metabolic activities (D-lactate, bile salt deconjugation), genetic and pathological side effects, epidemiological surveillance of adverse incidents in consumers (post market).

Potential probiotic health risk can be viewed in two ways (Sanders *et al.*, 2016). The first way encompasses the adverse effects of probiotic per se, while the second way is safety concerns, due toundefined quality standards and manufacturing procedures. However, the only standardization ofaccurate probiotic safety assessment is a retrospective epidemiologic study, accompanied by thoroughpharmacological and toxicological post-marketing vigilance of the product, in order to evaluatefurther probiotic safety (Kothari *et al.*, 2019).

Labelling Requirements for Probiotic Product

Appropriate labelling and health claims are a pre-requisite for the consumer to make an informed choice. Genus, species and strain, the serving size that delivers the effective dose of probiotic bacteria related to thehealth claim, minimum viable numbers of each probiotic strain at the end of shelf life, an precise description of the functional effect, as far as is permissible by law with therequired scientific evidence, appropriate storage conditions including the temperature at which the product should bestored, corporate contact details for consumer information, safety in the conditions of recommended use and label information must not mislead the consumers to understand that consumption of the food, ingredient or nutrient of such food, can treat, relieve, cure or prevent adisease should be mentioned on the label of probiotic products.

References

- Alves NN (2017). Spouted bed as an efficient processing for probiotic orange juice drying. *Food Res. Int.*, **101:** 54-60.
- Aspri M, Papademas P and Tsaltas D (2020). Review on Non-Dairy Probiotics and Their Use in Non-Dairy Based Products. *Fermentation*, **30(6)**: 2-20.
- Battistini C, Gullon B, Ichimura ES, Gomes AMP, Ribeiro EP, Kunigk L, Moreira JUV and Jurkiewicz CJ (2017). Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. *Braz. J. Microbiol.* in press.
- Binnendijk KH and Rijkers GT (2013). What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. *Benef. Microbes*, **4**: 223-230.
- BukolaAdebayoTayo and Stephanie Akpeji (2016). Probiotic Viability, Physicochemical and Sensory Properties of Probiotic Pineapple Juice. *Fermentation*, **20(2)**: 2-11.
- Cencic A and Chingwaru W (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. *Nutrients*, **2:** 611-625.
- Chaikham P (2015). Stability of probiotics encapsulated with Thai herbal extracts in fruit juices and yoghurt during refrigerated storage. *Food Bioscience*, **12:** 61-66.
- Chaudhary A (2019). Probiotic Fruit and Vegetable Juices: Approach Towards a Healthy Gut. *Int. J. Curr. Microbiol. App. Sci.*, **8(6):** 1265-1279.
- Costa MGM, Fonteles TV, de Jesus ALT and Rodrigues S (2013). Sonicated pineapple juice as substrate for *L. Casei* cultivation for probiotic beverage development: Process optimisation and product stability. *Food Chem.*, **139:** 261-266.
- De Simone C (2019). The unregulated probiotic market. *Clin. Gastroenterol. Hepatol.*, **17:** 809-817.
- Ding WK and Shah NP (2008). Survival of Free and Microencapsulated Probiotic Bacteria in Orange and Apple Juices. *International Food Research Journal*, 15(2): 219-232.

- Ellendersen LSN, Granato D, Guergoletto BK and Wosiacki G (2012). Development and sensory profile of a prebiotic beverage from apple fermented with *Lactobacillus casei*. *Eng. Life Sci.*, **12:** 1-11.
- Filannino P, Azzi L, Cavoski I et al. (2013). Exploitation of the health-promoting and sensory properties of organic pomegranate (*Punica granatum* L.) juice through lactic acid fermentation. International Journal of Food Microbiology., 163(2-3): 184-192.
- Filannino P, Bai Y, Di Cagno R, Gobbetti M and Ganzle MG (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. *Food Microbiology*, **46**: 272-279.
- Gaanappriya M, Guhankumar P, Kiruththica V, Santhiya N and Anita S (2013). Probiotication of fruit juices *Lactobacillus acidophilus. Int. J. Adv. Biotechnol. Res.*, 4: 72-77.
- Gao H, Wen J, Hu L *et al.* (2019). Momordica charantia juice with Lactobacillus plantarum fermentation: chemical composition, antioxidant properties and aroma profile. *Food Bioscience*, **29**: 62-72.
- Gaudreau H, Champagne CP, Remondetto GE, Bazinet L and Subirade M (2013). Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. *Food Res. Int.*, 53: 751-757.
- Jessica W and Sharareh H (2018). Development of Probiotic Fruit Juices Using Lactobacillus rhamnosus GR-1 Fortified with Short Chain and Long Chain Inulin Fiber. *Fermentation*. **27(4):** 2-12.
- Joao Silva D (2012). Nutritional Quality and Health Benefits of Vegetables: A Review. *Food and Nutrition Sciences*, **3**: 1354-1374.
- Kaprasob R, Kerdchoechuen O, Laohakunjit N, Sarkar D and Shetty K (2017). Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. *Process Biochemistry*, **59**: 141-149.
- Karimi R, Mortazavian AM and Da Cruz AG (2011). Viability of probiotic microorganisms in cheese during production and storage: a review. *Dairy Science Technology*, **91**: 283-308.
- Kerry RG, Patra JK, Gouda S, Park Y, Shin HS and Das G (2018). Benefaction of probiotics for human health: A Review. J. Food Drug Anal., 26: 927-939.
- Khatoon N and Gupta RK (2015). Probiotics beverages of sweet lime and sugarcane juices and its physiochemical, microbiological and shelf life studies. *Journal of Pharmacognosy and Phytochemistry*, 4(3): 25-34.
- Kidist FW, Henok K and Yassin H (2019). Probiotication of Fruit Juices by Supplemented. *International Journal of* Food Science and Nutrition Engineering, 9(2): 45-48.

- Kim SY (2017). Production of Fermented Kale Juices with Lactobacillus Strains and Nutritional Composition. *Prev. Nutr. Food Sci.*, **22**: 231-236.
- King VAE, Huang HY and Tsen JH (2007). Fermentation of tomato juice by cell immobilizedLactobacillus acidophilus. Mid-Taiwan J. Med., 12: 1-7.
- Kothari D, Patel S and Kim SK (2019). Probiotic supplements might not be universally-effective and safe: A Review. *Biomed. Pharmacother.*, **111**: 537-547.
- Kumar BV, Vijayendra SVN and Reddy OVS (2015). Trends in dairy and non-dairy probiotic products-A Review. J. Food Sci. Technol., 52: 6112-6124.
- Kun S, RezessySzabo JM, Nguyen QD and Hoschke A (2008). Changes of microbial population and some components in carrot juice during fermentation with selected *Bifido bacterium* strains. *Process Biochemistry*, 43(8): 816-821.
- Kwaw E, Ma Y, Tchabo W *et al.* (2018). Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. *Food Chemistry*, **250**: 148-154.
- Lamia A, Sana M and Moktar H (2020). Microbiological, Biochemical and Functional Aspects of Fermented Vegetable and Fruit Beverages. *Journal of Chemistry*, 1-12. https://doi.org/10.1155/2020/5790432
- Luckow T and Delahunty C (2004). Which juice is 'healthier'? A consumer study of probiotic non-dairy juice drinks. *Food Qual. Preference*, **15**: 751-759.
- Luckow T, Sheehan V, Fitzgerald G and Delahunty C (2006). Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. *Appetite*, **47:** 315-323.
- Gumienna M, Szwengiel A and G'orna B (2016). Bioactive components of pomegranate fruit and their transformation by fermentation processes. *European Food Research and Technology*, **242(5):** 631-640.
- Mantzourani I, Nouska C, Terpou A *et al.* (2018). Production of a novel functional fruit beverage consisting of cornelian cherry juice and probiotic bacteria. *Antioxidants*, **7(11)**: 163.
- Nag A and Das S (2013). Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. *J. Funct. Foods*, **5:** 170-177.
- Naga S, Umamahesh K and Reddy O (2014). A Comparative study on Probiotication of mixed Watermelon and Tomato juice by using Probiotic strains of Lactobacilli. *Int. J. Curr. Microbiol. App. Sci.*, 3(11): 977-984.
- Naidu AS, Bidlack WR and Clemens RA (1999). Probiotic Spectra of Lactic Acid Bacteria. *Critical Reviews in Food Science and Nutrition*, **39:** 113-126.

- Pakbin B, Razavi SH, Mahmoudi R and Gajarbeygi P (2014). Producing probiotic peach juice. *Biotechnology Health Science*, **1:** 1-5.
- Peerajan S, Chaiyasut C, Sirilun S, Chaiyasut K, Kesika P and Sivamaruthi B (2016). Enrichment of nutritional value of *Phyllanthus emblica* fruit juice using the probiotic bacterium, Lactobacillus paracasei HII01 mediated fermentation. *Food Science and Technology*, **36(1)**: 116-123.
- Perricone M, Bevilacqua A, Altieri C, Sinigaglia M and Corbo MR (2015). Challenges for the production of probiotic fruit juices. *Beverages*, 1: 95-103.
- Ranadheera CS, Prasanna PHP, Vidanarachchi JK (2014). Fruit juice as probiotic carriers. In Fruit Juices: Types, Nutritional Composition and Health Benefits, 1st ed.; Elder KE, Ed.; Nova Science Publishers: Hauppauge, NY, USA, pp. 1-19.
- Ricci A, Cirlini M, Calani L *et al.* (2019). In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. *Food Chemistry*, **276:** 692-699.
- Rodriguez H, Curiel JA, Landete JM, de Las Rivas B, de Felipe FL, Gomez-Cordoves C, Mancheno JM and Munoz R (2009). Food phenolics and lactic acid bacteria. *Int. J. Food Microbiol.*, **132**: 79-90.
- Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, Paraskevakos G and Leyer G (2016). Probiotic use in at-risk populations. *J. Am. Pharm. Assoc.*, **56**: 680-686.
- Shah NP, Ding WK, Fallourd MJ and Leyer G (2010). Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. *Journal of Food Science*, **75(5)**: 278-82.
- Sheehan VM, Ross P and Fitzgerald GF (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. *Innovative Food Science and Emerging Technologies*, **8:** 279-284.
- Shori AB (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. *Biocatal. Agric. Biotechnol.*, **4:** 423-431.
- Siro I, Kápolna E, Kápolna B and Lugasi A (2008). Functional food. Product development, marketing and consumer acceptance-A Review. *Appetite*, **51:** 456-467.

- Steinkraus KH (1997). Classification of fermented foods: worldwide review of household fermentation techniques. *Food Control*, **8:** 311-317.
- Thakur A and Joshi VK (2017). Preparation of probiotic apple juice by lactic acid fermentation. *International Journal of Food and Fermentation Technology*, **7(1):** 67-85.
- Tsen JH, Lin YP and King VAE (2004). Fermentation of banana media by using κcarrageenan immobilized *Lactobacillus acidophilus*. *Int. J. Food Microbiol.*, **91:** 215-220.
- Vaithilingam M, Chandrasekaran S, Mehra A et al. (2016). Fermentation of beet juice using lactic acid bacteria and its cytotoxic activity against human liver cancer cell lines HepG2. Current Bioactive Compounds, 12(4): 258-263.
- Valero-Cases E and Frutos MJ (2017). Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices. *Plant Foods Hum. Nutr.*, 72: 161-167.
- Wang CY, Ng CC, Su H, Tzeng WS and Shyu YT (2009). Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria. *International Journal of Food Science and Nutrition*, **60(6)**: 98-106.
- Wunwisa Krasaekoopt and Kamolnate Kitsawad (2010). Sensory Characteristics and Consumer Acceptance of Fruit Juice Containing Probioitcs Beads in Thailand. *AU Journal of Technology*, 14(1): 33-38.
- Yoon KY, Woodams EE and Hang YD (2004). Probiotication of tomato juice by lactic acid bacteria. *Journal of Microbiology*, **42**: 315-318.
- Yoon KY, Woodams EE and Hang YD (2005). Fermentation of beet juice by beneficial lactic acid bacteria. *LWT Food Sci. Technol.*, **38:** 73-75.
- Yoon KY, Woodams EE, Hang YD (2006). Production of probiotic cabbage juice by lactic acid bacteria. *Bioresour. Technol.*, 97: 1427-1430.

Table 1: Examples of Fruit and veget	able Probiotic Product
--------------------------------------	------------------------

Product	Probiotic Strain	References	
Apple	Lactobacillus casei,	de Souza <i>et al.</i> , 2012,	
	Lactobacillus plantarum ATCC14917	Li et al., 2019	
Apricot Juice	Bifidobacterium lactis Bb-12, Bifidobacterium	Bujn <i>et al.</i> , 2018	
	longum Bb-46, Lactobacillus casei 01 and		
	Lactobacillus acidophilus La-5		
Banana puree	Lactobacillus acidophilus	Tsen <i>et al.</i> , 2009	
Beet Juice	Lactobacillus plantarum, Lactobacillus casei,	Yoon <i>et al.</i> , 2005	
	Lactobacillus delbrueckii		
	Bifidobacteriumanimalis subsp. lactis BB-12 and	de Oliveira Ribeiro et al.,	
	Lactobacillus acidophilus LA-5	2019	
Blended orange, carrot,	Lactobacillus plantarum CICC20265,	Xu et al., 2019	
apple and Chinese jujube	Bifidobacterium breve CICC6184 and		
juice	Streptococcus thermophilus CICC6220		
Cabbage Juice	Lactobacillus plantarum C3, Lactobacillus	Yoon et al., 2006	
-	delbrueckii D7		
Carrot and orange juice	Lactobacillus plantarum	Valero-Cases et al., 2017	
Cashew apple juice	Lactobacillus plantarum, Lactobacillus casei	Kaprasob et al., 2018,	
** J		Pereira et al., 2011	
Cantaloupe juice	Lactobacillus casei NRRL B-442	Fonteles et al., 2012	
Cherry juice	Lactobacillus plantarum, Lactobacillus casei,	Ricci et al., 2019	
	Lactobacillus paracasei and Lactobacillus		
	rhamnosus		
Cornelian cherry juice	Lactobacillus plantarum ATCC 14917	Mantzourani et al., 2018	
Fruit smoothies	Lactobacillus acidophilus LA-5, Bifidobacterium	Rodgers, 2008	
	animalis spp. lactis BB-12		
Honeydew melon juice	Lactobacillus casei NCIMB 4114	Saw et al., 2011	
Litchi juice	Lactobacillus casei	Zhen <i>et al.</i> , 2014	
Mango and guava juice	Lactobacillus casei, Streptococcus	Maldonado <i>et al.</i> , 2018	
inango and gauva jaroo	thermophillus, Lactobacillus bulgaricus		
Moringa leaves and beetroot	Lactobacillus plantarum, Enterococcus hirae	Vanajakshi <i>et al.,</i> 2015	
beverage	Euclobacinus pranarum, Emcrococcus mrac	Valiajakoni er ar., 2015	
Orange, grapefruit, black	Lactobacillus plantarum	Nualkaekul et al., 2012	
currant, pineapple,	Euclobucinus pranar um		
pomegranate, cranberry and			
lemon juice			
Orange, pineapple and	Lactobacillus casei DN 114001, Lactobacillus	Sheehan et al., 2007	
cranberry juice	rhamnosus GG, Lactobacillus paracasei NFBC		
eranoerry julee	43338, Bifidobacterium lactis BB-12		
Passion fruit juice	Bifidobacterium animalis subsp. lactis BB-12	Dias et al., 2018	
Pear Juice	Lactobacillus acidophilus	Ankoleka <i>et al.</i> , 2010	
Pineapple Juice	Lactobacillus plantarum 299V, Lactobacillus	Nguyen <i>et al.</i> , 2012	
r meapple Juice	acidophilus La5, Bifidobacterium	Nguyen ei al., 2019	
	lactis Bb-12		
Plum Juice	Lactobacillus kefiranofaciens, Candida kefir,	Shoola and Suganya	
r ium juice	Saccharomyces boluradii	Sheela and Suganya, 2012	
Domograpata ivico	Lactobacillus plantarum ATCC 14917,	Mantzourani <i>et al.</i> , 2019	
Pomegranate juice		-	
	Lactobacillus plantarum, Lactobacillus	Mousavi et al., 2011	
	delbrueckii, Lactobacillus acidophilus,		
Dumplin iniga	Lactobacillus paracasei Lactobacillus reuteri	Somionova et -1, 2012	
Pumpkin juice		Semjonovs <i>et al.</i> , 2013	
Sohiong juice	Lactobacillus plantarum MCC 2974	Vivek <i>et al.</i> , 2019	
Star fruit juice	Lactobacillus helveticus L10, Lactobacillus	Lu <i>et al.</i> , 2018	
	paracasei L26, and Lactobacillus		
	rhamnosus HN001	· · ·	
Table olives	Lactobacillus GG, Lactobacillus paracasei,	Lavermicocca <i>et al.,</i>	
	Lactobacillus plantarum	2005,	
		Hurtado et al., 2012	

Cereal Probiotic	Product Probiotic Strains	Reference	
Barley malt fermented beverage	Weissellacibaria	Zannini et al., 2013	
Beverage from rice, barley, oats, wheat, soy flour and red grape juice	Lactobacillus plantarum 6E and M6	Coda <i>et al.</i> , 2012	
Breadfruit Flour beverage	Lactobacillus plantarum DPC 206, Lactobacillus acidophilus "de Winkel", Lactobacillus caseiShirota	Gao <i>et al.</i> , 2019	
Cashew juice	Lactobacillus casei NRRL B 442	Pereira et al., 2011	
Fermented beverage from maize and rice	Lactobacillus plantarum, Torulasporadelbrueckii, Lactobacillus acidophilus	Freire et al., 2017	
Fermented oat flour	Streptococcus thermophilus TH-4, Lactobacillus acidophilus LA-5	Duru <i>et al.</i> , 2019	
Fermented oat flour beverage	Lactobacillus plantarum	Gupta and Bajaj, 2017	
Legume sprouts	Lactobacilllus plantarum 299V	Swieca et al., 2018	
maize-based substrate	Lactobacillus paracasei LBC-81, Saccharomyces cerevisiae CCMA 0731, Saccharomyces cerevisiae CCMA 0732 and Pichiakluyveri CCMA 0615	Menezes et al., 2018	
Malt beverage	Lactobacillus plantarum NCIMB 8826, Lactobacillus acidophilus NCIMB 8821	Rathore et al., 2012	
Millet-Based Probiotic Fermented Food	Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106	Di Stefano et al., 2017	
Oat based symbiotic drink	Rhizopus oryzae, L. acidophilus	Gao et al., 2012	
Oat-based probiotic drink	Lactobacillus plantarum B28; Lactobacillus reuteri ATCC 55730	Angelovet al.,2006	
Peanut milk	Bifidobacterium pseudocatenulatum G4	Kabeir et al., 2009	
Soymilk	Lactobacillus acidophilus	Donkor et al., 2007	
Soymilk with apple juice	Lactobacillus acidophilus	Icier et al., 2015	
Wheat based probiotic	Lactobacillus acidophilus NCDC-14,	Sharma et al., 2014	
Beverage	Lactobacillus acidophilus NCDC-16		
Wheat/rice cereal infant products	Bifidobacteriumanimalis subsp. lactis BB-12®	Lebos-Pavunc <i>et al.,</i> 2019	

 Table 2: Examples of Cereal Probiotic Products

Examples of Probiotic	Probiotic Strain	Strategy	Reference
Beetroot and carrot	Lb. acidophilus	Fortification with brewer's yeast	Rakin et al., 2007
Juice		autolysate	
Apple Juice	Lb. rhamnosus	Fortification with Glucan	Saarela et al., 2006
apple cider, orange, and	Lb. rhamnosus	Fortification with long and short	Jessica and Sharareh,
grape juice		chain Inulin	2018
pineapple, orange,	Lb. reuteri	Adaptation and Induction of	Perricone et al.,
green apple		Resistance (Acid and Phenol Stress)	2014
blended juice (orange -	B. breve	Adaptation and Induction of	Saarela et al., 2011
grape and passion fruit)		Resistance (Acid Stress)	
Freeze Dried Strains	Lb. helveticus	Addition of Tea Extract	Nag and Das, 2013
	Lb. helveticus	Addition of Vit E	Gaudreau et al.,2013
Model Juice	L. rhamnosus	Addition of grape seed extract, green	Shah et al., 2010
	HN001,	tea extract and vitamin C	
	HOWARU B.		
	Lactis HN001 and		
	L. Paracasei LPC		
	37		
Banana puree	Lb. acidophilus	Microencapsulation with Ca-alginate	Tsen <i>et al</i>
Sapodilla, grapes,	Lb. plantarum in,	Microencapsulation with Na -	Gaanappriya et al.,
orange and watermelon		Alginate	2013
juices			
orange and apple juices	Lactobacillus	Microencapsulation with Na -	Ding and Shah,
	rhamnosus,	Alginate	2008.
	Bifidobacteriumlo		
	ngum, L.		
	salivarius, L.		
	plantarum, L.		
	acidophilus, L.		
	paracasei, B.		
	<i>lactis type Bi</i> -04		
	and B. lactis type		
	Bi-07		
tomato juice	Lb. acidophilus	Microencapsulation with Ca -	King et al., 2007
		alginate	
Orange and Apple Juice	Lb. casei	Microencapsulation with Chitosan	Wunwisa and
			Kamolnate, 2010
mulberry, maoberry,	<i>L. casei</i> 01b,	Alginate Encapsulation with cashew	Chaikham, 2015
longan, and melon juices	L.acidophilusLA5	flower, pennywort, and yanang	
	and B. lactis Bb-12		

 Table 3: Strategies for Improving Survival of Probiotic Strains